PHYSICAL / INORGANIC **CHEMISTRY**

DPP No. 26

Total Marks: 46

Max. Time: 46 min.

Topic: Electro Chemistry

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.12 Multiple choice objective ('-1' negative marking) Q.13

(3 marks, 3 min.) [36, 36] (4 marks, 4 min.) [4, 4]

(3 marks, 3 min.) [6, 6]

Comprehension ('-1' negative marking) Q.14 to Q.15

1. In Galvanic cell:

(A) Chemical reaction produces electrical energy

(B) Electrical energy produces chemical reaction

(C) Reduction occurs at anode

(D) Oxidation occurs at cathode

2. The standard oxidation potentials, E°, for the half-reaction are as

 $Zn = Zn^{2+} + 2e^{-}$

 $E^{\circ} = + 0.76 \text{ V}$

 $Fe = Fe^{2+} + 2e^{-}$

 E° = + 0.41 V

the E°_{cell} is :

 $Fe^{+2} + Zn \longrightarrow Zn^{2+} + Fe$ is :

(A) -0.35 V

(B) + 0.35 V

(C) +1.17 V

(D) - 1.17 V

From the following E° values of half cells -3.

(i) $A + e^- \rightarrow A^-$;

 $E^{\circ} = -0.24 \text{ V}$

(ii) $B^- + e^- \rightarrow B^{2-}$;

 E° = + 1.25 V

(iii) $C^- + 2e^- \rightarrow C^{3-}$:

 $E^{\circ} = -1.25 \text{ V}$

(iv) D + 2e⁻ \to D²⁻;

 E° = + 0.68 V

What combination of two half cells would result in a cell with the largest potential

(A) (ii) and (iii)

(B) (ii) and (iv)

(C) (i) and (iii)

(D) (i) and (iv)

The Ni/Ni²⁺ and F⁻/F₂ electrode potentials are listed as +0.25 V and –2.87 V respectively (with respect to the 4. standard hydrogen electrode). The cell potential when these are coupled under standard conditions is

(A) 2.62 V and dependent on the reference electrode chosen.

(B) 3.12 V and independent of the reference electrode chosen.

(C) 3.12 V and dependent on the reference electrode chosen.

(D) 2.62 V and independent of the reference electrode chosen.

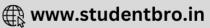
5. E° for some half cell reactions are given below

 $Sn^{+4} + 2e^{-} \longrightarrow Sn^{2+}$; E° = 0.151 V

 $2Hg^{2+} + 2e \longrightarrow Hg_2^{+2}$; E° = 0.92 V

 $PbO_{2} + 4H^{+} + 2e^{-} \longrightarrow Pb^{2+} + 2H_{2}O$; E° = 1.45 V

based on the given data which statement is correct.


(A) Sn⁴⁺ is a stronger oxidising agent than Pb⁺⁴

(B) Sn²⁺ is a stronger reducing agent than Hg₂²⁺

(C) Hg²⁺ is a stronger oxidising agent than Pb⁴⁺

(D) Pb⁺² is a stronger reducing agent than Sn²⁺

- For the cell prepared from electrode A and B, electrode A: $\frac{Cr_2O_7^{2-}}{Cr^{3+}}$, E_{red}^0 = +1.33 V and electrode 6.
 - B: $\frac{\text{Fe}^{3+}}{\text{Fe}^{2+}}$, $\text{E}_{\text{red}}^0 = 0.77 \text{ V}$, which of the following statement is **not correct?**
 - (A) The electrons will flow from B to A (in the outer circuit) when connections are made.
 - (B) The standard emf of the cell will be 0.56 V.
 - (C) A will be positive electrode.
 - (D) None of the above.
- 7. The standard reduction potentials at 25°C for the following half reactions are given against each -

$$Zn^{2+}(aq) + 2e^- \longrightarrow Zn(s),$$

$$Cr^{3+}(aq) + 3e^- \longrightarrow Cr(s),$$

$$2H^+ + 2e^- \longrightarrow H_2(g)$$
,

$$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+},$$

Which is the strongest reducing agent -

(C)
$$H_2(g)$$

- 8. Hydrogen gas will not reduce -
 - (A) heated cupric oxide

(B) heated feric oxide

(C) heated stannic oxide

(D) heated aluminium oxide

$$[E_{Sn^{+4}/Sn^{+2}}^{\circ}=0.15V \text{ ; } E_{Cu^{+2}/Cu^{+}}^{\circ}=+0.167V \text{ ; } E_{Fe^{+3}/Fe^{+2}}^{\circ}=+0.771V \text{ ; } E_{Al^{+3}/Al}^{\circ}=-1.67V]$$

- 9. Four colourless salt solutions are placed in separate test tubes and a strip of copper is dipped in each. Which solution finally turns blue? (use data from electrochemical series)
 - $(A) Pb(NO_3)_3$
- (B) AgNO₃
- $(C) Zn(NO_{2})_{2}$
- 10. Red hot carbon will remove oxygen from the oxide XO and YO but not from ZO. Y will remove oxygen from XO. Use this evidence to deduce the order of activity of the three metals X, Y, and Z putting the most active first:
 - (A) XYZ
- (B) ZYX
- (C) YXZ
- (D) ZXY
- 11. Which statement about standard reduction potentials is correct
 - (A) E_{H^+/H_0}° = Zero at all temperature
 - (B) $E_{D^{+}/D_{0}}^{\circ}$ = zero at 298 K
 - (C) A redox reaction is feasible if sum of SRP of oxidant and that of reductant is a positive quantity
 - (D) K₂Cr₂O₇ (acid) is stronger oxidising agent than KMnO₄ (acid)

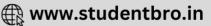
[Given:
$$E_{MnO_4^-/Mn^{2+}}^{\circ} = 1.51 \text{ V}$$
; $E_{Cr_2O_7^{2-}/Cr^{3+}}^{\circ} = 1.33 \text{ V}$]

$$E_{Cr_2O_7^{2-}/Cr^{3+}}^{\circ} = 1.33 \text{ V}$$

- 12. The temperature defining the standard electrode potential is
 - (A) 298 K
- (B) 273 K
- (C) 373 K
- (D) any temperature can be selected but it must remain constant and species must be in their standard states.
- 13. The standard reduction potentials of some half cell reactions are given below:

$$PbO_{2} + 4H^{+} + 2e^{-} \rightleftharpoons Pb^{2+} + 2H_{2}O$$

$$E^0 = 1.455 \text{ V}$$

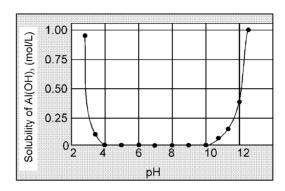

$$MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightleftharpoons Mn^{2+} + 4H_{2}O$$

$$E^0 = 1.51 \text{ V}$$

$$E^0 = 1.61 \text{ V}$$

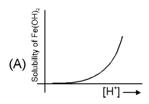
Pick out the correct statement:

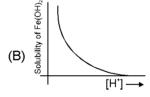
- (A) Ce⁺⁴ will oxidise Pb²⁺ to PbO₂
- (B) MnO₄ will oxidise Pb²⁺ to PbO₂
- (C) H₂O₂ will oxidise Mn⁺² to MnO₄
- (D) PbO₂ will oxidise Mn⁺² to MnO₄

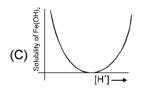

Comprehension # (Q.14 to Q.15)

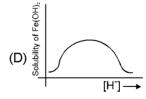
Amphoteric oxides, such as aluminium oxide, are soluble both in strongly acidic and in strongly basic solutions:

In acid :
$$A\ell_2O_3(s) + 6H_3O^+(aq) \Longrightarrow 2A\ell^{3+}(aq) + 9H_2O(\ell)$$


In base :
$$A\ell(OH)_3(s) + OH^-(aq) \longrightarrow A\ell(OH)_4^-(aq)$$


Dissolution of AI(OH)₃ in excess base is just a special case of the effect of complex-ion formation on solubility. Al(OH)₃ dissolves because excess OH ions convert it to the soluble complex ion Al(OH)₄ (aluminate ion). The effect of pH on the solubility of $A\ell(OH)_3$ is shown in figure.




Other examples of amphoteric hydroxides include Zn(OH)₂, Cr(OH)₃, Sn(OH)₂ and Pb(OH)₂, which react with excess OH ions to form the soluble complex ions $Zn(OH)_4^{2-}$ (zincate ion), $Cr(OH)_4^{--}$ (chromite ion), Sn(OH)₃ (stannite ion), and Pb(OH)₃ (plumbite ion), respectively. By contrast, basic hydroxides, such as Mn(OH)₂, Fe(OH)₂, and Fe(OH)₃, dissolve in strong acid but not in strong base.

14. Which of the following curves best represents the variation of solubility of ferrous hydroxide Fe(OH)₂ with the concentration of [H+] ions in the solution :

At what maximum pH will 5.0 x 10^{-3} mol of Al(OH)₃ go into 1L solution as Al³⁺? 15. Given K_{sp} [Al(OH)₃] = 5.0 x 10⁻³³ and for [Al(OH)₄⁻] \Longrightarrow Al³⁺ + 4OH⁻, K_{eq} = 1.0 x 10⁻³⁴. (A) 3.3

Answer Kev

DPP No. #26

1.

(A)

2.

(B)

(A)

(D)

3. (A)

8.

13.

4.

(B)

5.

(B)

(B)

(C)

6.

11.

(D) (A) 7.

12.

(D)

(ABC)

14.

(B) (A) 10. 15.

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #26

- 1. Galvanic cells are electro chemical cells which convert chemical energy into electrical energy.
- 2. $E_{coll}^{o} = [E_{coll}^{o} - E_{coll}^{o}]_{CD} = 0.76 - 0.41 = 0.35 \text{ V}.$
- $E_{cell}^{\circ} = [E_{c}^{\circ} E_{a}^{\circ}]_{RP} = 1.25 + 1.25 = 2.50 \text{ V}.$ 3. $E_{\text{cell}}^{\circ} = [E_{\text{c}}^{\circ} - E_{\text{a}}^{\circ}]_{\text{RP}}^{\circ} = 1.25 - (-1.25) = 2.50 \text{ V (Maximum value)}$
- 4. Electrode potential values depend on reference electrode chosen but not cell potential.
- Sn2+ ---- Sn+4 + 2e-5.

$$E^{\circ} = -0.15 \text{ V}$$

$$E^{\circ} = -0.92 \text{ V}$$

6.

 $E^{\circ}(Cr_{2}O_{2}^{2-} \rightarrow Cr^{3+}) = 1.33V (A)$

 $E^{\circ} (Fe^{3+} \rightarrow Fe^{2+}) = 0.77V (B)$

When these two electrodes are connected, then the electrode with higher reduction potential act as cathode. So (A) is cathode (B) is anode.

e- flow from anode to cathode in external circuit.

$$E_{cell}^{o} = 1.33 - 0.77 = 0.56V$$

cathode (A) is a +ve electrode in electro chemicall cell.

- Higher oxidation potential, higher reducing tendency. 7.
- $E_{H^{+}/H_{0}}^{\circ} = 0 \text{ V}.$ 8.

Hydrogen gas will reduce those metals which have reduction potential greater than H₂ gas.

- Cu will reduce to those metal which have higher reduction potential than Cu. 9. So, Ag+ has higher potential.
- 10. As carbon can reduce XO and YO but not ZO, SRP of X and Y are more than carbon. Y can reduce XO, which means SRP of X is more than Y. Hence the order of SRP is

SRP of X > SRP of Y > SRP of C > SRP of Z.

More active metal has lesser SRP.

So the order of activity of metals is Z > Y > X

- 11. (A) It is a convention that SRP of standard hydrogen electrode is zero at all tempertures.
 - (B) is incorrect.
 - (C) the difference should be +ve quantity.
 - (D) KMnO₄ is stronger oxidising agent (SRP values).
- 12. Any temperature can be selected.
- 13. From given SRP values.
- 14. On increasing concentration of [H⁺] ions the solubility of basic hydroxide Fe(OH)₂, will increase.

